Osano and Jira — Subject Rights Request Workflow
Overview:
This document walks through the following:

- How to use Osano Webhooks to create Jira Issues once the requestor’s email is verified.
- How to update Subject Rights Requestsin Osano via the Subject Rights APl once the Jira Issue is
closed.

Benefits:
Improve subject rights request handling efficiency and time to resolution by:

- Automatically notifying your technical business units about new Subject Rights Requests
- Automatically updating the request within Osano once the Jira ticket is closed.

Requirements:

- InOsano:

o Access to Webhooks in Osano (“Admin” User Role)
= https://docs.osano.com/user-roles
= https://docs.osano.com/integrations/introduction-to-webhooks

o An Osano APl Key
= Within Osano, click the gear icon in the top-right corner and click “AP1 Keys”.
= (Click the purple “+” in the bottom-right cornerand follow the prompts to create

your APl Key.

= Copy it and save it somewhere safe as we will use it with Jira Webhooks later.

- Inlira:
o Jira Account
= With access to Project Settings to create an “Automation”
o lira APl Token
= The user creating the token will at least need “Read & Write edits issues &
tickets” permissions.
= The APl Token will need to be BASE64 encoded. More information here on how
to do that - https://developer.atlassian.com/cloud/jira/platform/basic-auth-for-
rest-apis/
o lira ProjectKey (Projects > View All Projects > Key will be in the “Key” column (all caps))
= More info here on how to find your Project Key -
https://marketsplash.com/tutorials/jira/how-to-find-jira-project-key/#link1
o Custom Fields to receive the Subject Rights values from Osano
= More info on how to create Custom Fields in Jira is available here -
https://support.atlassian.com/jira-cloud-administration/docs/create-a-custom-
field/
= More info on how to find the IDs of Custom Fields in Jira is available here -
https://confluence.atlassian.com/jirakb/how-to-find-id-for-custom-field-s-
744522503.html

How to Make It:

In Jira:

Step 1: Create an APl Key by going to https://id.atlassian.com/manage-profile/security/api-tokens. After
logging in, click “Create API token”. Save it for later
- Note: You’ll need to BASE64 your user email AND the API Key you grabbed from Jira. You can
find an example of that here - https://developer.atlassian.com/cloud/jira/platform/basic-auth-
for-rest-apis/
- You’'llalso need to put “Basic” in front of the BASE64 encoded string for the “Authorization”
header within the Osano Webhook section. Image of this in the “In Osano” section below.

Step 2: In Jira, click on “Projects” in the top navigation bar, then click “View All Projects” in the
dropdown.
- There should be a “KEY” column. Grab the key for the project that you’d like to create “Issues”
in and save that key for later.

Step 3: You'll need to create customfields in Jira to receive the values fromthe Osano Webhook and use
them in your Jira Workflows.
- Inthe example below, we’ve created three fields. However, you can create custom fields to
utilize any of the Osano Webhook Variables found here.
- Note: We will use the ‘osanoDsarld" value in our Jira Webhook URL later. The naming scheme
hereis your preference, but we will be utilizing the Osano “dsarld® Webhook variable value here
and in the Osano API call later in the walkthrough.

osanoDsarld Aa Text Field (single line) 1screen, 1 context 1 project

The ID of the DSAR

Osano - Email Aa Text Field (single line) 1 screen, 1 context 1 project

Osano - Request Type Aa Text Field (single line) 1screen, 1 context 1 project

type of Subject Rights Request

Step 4: Next, you'll need to create an “Automation” that updates the Subject Rights Request once the
issue is closed. To create an Automation from the “Project” view, do the following:

- Click on “Project Settings” (in the left-side navigation)

- Click on “Automation” (in the left-side navigation)

- Click “Create Rule” in the top-right corner
- Forthe “Add a Trigger” step, search for and use the “Multiple issue events” trigger.
- Use “Issue Transitioned” as the value for the “Issue events” input and click “Next”:

*++ Multiple issue events E]'

Select one or more issue events that will trigger this rule to run:

Issue events *

Issue Transitioned X QD v

Back

- Next, click “Add Component” and click “IF: Add a condition”
o Under “All Components” choose “{{smart values}} Condition”. Use the following values
and then click “Next”

{} {{smart values}} condition 0 E]'

Compares two values using smart values and regular expressions. Learn
more about {{smart values}} condition

First value *

{{issue.status.name}}

Condition

equals v

Second value

Done

Back

> What values can | compare?

- Next, click “Add Component” and click “THEN: Add an action”
o Search for and choose “Send Web Request”. Fillin the fields utilizing the notes below and
then click “Next”:
o Note: For the the “Web request URL”, the value in curly braces should be as follows
= {{issue.JIRA_CUSTOM_FIELD NAME}}
e The JIRA_CUSTOM_FIELD NAME section should be the Jira custom field
name that receives the “dsarld” from the Osano Webhook.

®» The required “Headers” are:
e Content-Type: Application/JSON
e x-osano-api-key: {{YOUR_OSANO_API_KEY}}

o Example below of what the completed “Send Web Request” component should look like:

J5 Send web request (W]]ﬁ[

This action will send a HTTP request to the url specified.Learn more

Web request URL *

https://api.osano.com/v1/dsar/{{issue.osanoDsarld}}

Request parameters must be url encoded, smart values should use:
{{value.urlEncode}}.

HTTP method *

PATCH v

Web request body *

Custom data v

Custom data *

{
"status": "COMPLETED",

"notes": "The requested actions were completed."

}

Delay execution of subsequent rule actions until we've received a
response for this web request

response for this web request

Headers (optional)

Key Value Hidden
Content-Type Application/JSON w
X-0sano-api-key TEST w

+ Add another header

> Validate your web request configuration

In the top-right corner, click “Turn on rule”.

o Fillin the “Rule name” and “Who can edit this rule?” sections and then click on “Turn on
rule”.

- Anoverview of what the Automation flow should look like:

Mark Subject Rights Request as COMPLETED in Osano orart

When: Rule is triggered on

« Issue Transitioned

If: Compare two values
{} Checks if

{{issue.status.name}) equals Done

Then: Send web request

& rarcon

https:/japi.osano.comfvi/dsarf{{issue.osanoDsarld}}

+ Add component

In Osano:

Osana * English » 6 o @
Email Verified > Create Jira Ticket [oeieie [l seve |
Seting
Histary Settings

Email Verifiad > Create Jira Tickat @ o
App and Event

Pttt -

Subject Rights - Email Verified

Filters (Opticnall

Add filters a5 an additional triggering condition for the event

Field = Condition - vk

+ Add Filter

Organizations [Optionsl)

< an additional Iriggering candition fer the event

Step 1: Navigate to Webhook section in Osano by clicking the gear icon in the top-right corner, then
clicking “Webhooks” in the drop-down menu.

Step 2: Under Settings, add a Name for the Webhook and toggle it to Active.

Step 3: Under App and Event select the following:

“Subject Rights” for Product
“Email Verified” for Event

Step 4: (optional) Add filters and Organizations if applicable.

Osano =

English + @3 o

Seftings Actions
Histary

hitps:/fexample allagsian netirest/apiilstest/isse

Headers (cpions]

Authorization Basic testiesttestteatstesvd2iestiesties’ [

Content Type

appiicationson]
+ Add Header
Content (optional)

== Available Content

: "EXAMPLE JIRA TICKET REQUEST BODY",

cor o
application you are bu

JnEma
{dsarbetails. fanily-name}
{dsarFormlane} FinRequest T

ot Taske

{{created}Hn Dats Subject Accese Request crestion. 1)
{ s

DDTHH:mm:s5.555Z format

(created

Email o the Data Subject Access [s]
Requester

Step 5: For your Headers add the following:

- Authorization

o {Your Baseb64 encoded string from Jira}
- Content-Type

o application-json

Step 6: Fill in the Content window with the desired Jira Issue Issue. Example JSON is below. You can
reference the Osano “Webhook Substitutable Variables” in the side-panel and here.

Note: Be sure to include your Jira custom fields so that you can reference them in the Jira
webhook.

"comment": "EXAMPLE JIRA TICKET REQUEST BODY",
"fields": {
"project": {
"key": "KAN"

}l

"summary": "{{dsaRequestType}} Request for {{dsarDetails.email}}",

"description": "{{dsaRequestType}} Request for {{dsarDetails.email}}.\nCreated: {{created}}\nEmail:
{{dsarDetails.email}}\nFirst Name: {{dsarDetails.given-name}}\nLast Name:{{dsarDetails.family-
name}\nDue Date: {{due}}\nSource of Request: {{dsaRequestSource}}\nForm Name:
{{dsarFormName}}\nRequest Type: {{dsaRequestType}}\nDSAR ID: {{dsarld}}",

"issuetype": {
"name": "Task"
b
"customfield 10044": "{{dsarDetails.email}}",
"customfield_10045": "{{dsaRequestType}}",
"customfield_10046": "{{dsarld}}"
}
}

Step 7: Click “Save” in the top-right corner to save the Webhook.

You should now be able to handle Subject Rights Requests more efficiently by:

- Automatically creating Jira Issues when a Subject Rights request is received
- Automatically updating the request within Osano once the Jira ticket is closed

